Data mining using Relational Database M anagement
Systems*

Beibei Zod, Xuesong M4, Bettina Kemmé, Glen Newtos, and Doina Precup

1 McGill University, Montreal, Canada
2 National Research Council, Canada

Abstract. Software packages providing a whole set of data mining anthima
learning algorithms are attractive because they allow xmgatation with many
kinds of algorithms in an easy setup. However, these paskageoften based
on main-memory data structures, limiting the amount of da&y can handle.
In this paper we use a relational database as secondargestorarder to elimi-
nate this limitation. Unlike existing approaches, whicteaffocus on optimizing
a single algorithm to work with a database backend, we pepogeneral ap-
proach, which provides a database interface for severatidigns at once. We
have taken a popular machine learning software packageaVsekl added a re-
lational storage manager as back-tier to the system. Tle@gi®h is transparent
to the algorithms implemented in Weka, since it is hiddenitmhVeka'’s stan-
dard main-memory data structure interface. Furtherman@esgeneral mining
tasks are transfered into the database system to speedaytiereWe tested the
extended system, refered to as WekaDB, and our results stadvit achieves a
much higher scalability than Weka, while providing the sasugut and main-
taining good computation time.

1 Introduction

Machine learning and mining algorithms face the criticaliss of scalability in the pres-
ence of huge amounts of data . Typical approachesto adtiiegsdblem are to select a
subset of the data [4, 3], to adjust a particular algorithmeaok incrementally (process-
ing small batches of data at a time), or to change the algosittuch that they use data
structures and access methods that are aware of the segstumtage. For instance, [8,
2] propose algorithms for decision tree construction ticaeas special relational tables
on secondary storage. Agarwal et al [7] develop databaskimgntations of Apriori,
a well-known algorithm for association rule mining, andsttbat some very specific
implementation details can have a big impact on performartoeir approach achieves
scalability by rearranging fundamental steps of the atbori Both of these pieces of
work require the developer of the mining algorithm to be vieayiliar with database
technology, implementing stored procedures, user definedtibns, or choosing the
best SQL statements. Machine learning researchers, howareeoften not familiar
enough with database technology to be aware of all optimoizgtossibilities.

The goal of our research is to provide a general solution atabdity that can be
applied to existing algorithms, ideally without modifyitigem, and that can be used
by machine learning researchers to implement new algosithithout the need to be
database experts. For that purpose, we have taken a verlapopen-source package

* Supported by NSERC, CFIl, NRC

www.manaraa.com

of machine learning algorithms, Weka [9], which can only sedion data sets that
can fit into main memory, and extended it to be able to use ddataas backend. In
the extended system, WekaDB, a storage manager interfdedined with two imple-
mentations. One implementation is the original main-mgmepresentation of data,
the other uses a relational database management systemJpPRWM algorithms im-
plemented in Weka can run in WekaDB without changes, and sarither of the two
storage implementations depending on the data set size, Adésv algorithms can be
added to the package without developers being requireddw ISQL.

Our basic approach couples Weka and the database rathelylofise basic model
uses the DBMS as a simple storage with the facility to re¢rimcords individually
from the database, perform all computation in main memaorg, \&rite any necessary
changes back to the database. However, accessing recdidsglurally is expensive,
so WekaDB also implements several generally applicablienigdtions. First, data is
transferred in chunks between the database and WekaDRihst®ne record at a time
whenever possible. Second, many of the storage managdasgenethods are imple-
mented using advanced SQL statements; in particular, veeddkantage of aggregate
functionality (like sum, avg) provided by the DBMS. Thir@yee popular libraries (e.g.,
pre-processing filters) that were originally implementadap of the storage interface,
have been reimplemented to take advantage of DBMS fundtigrfzurthermore, even
though WekaDB itself eases data size limitations, the impletations of the machine
learning algorithms can create large internal data strasfumposing indirect limita-
tions. In order to address this issue WekaDB provides databaplementations for
typical main memory data structures, like arrays. The dlgars can access these data
structures as if they were implemented in main-memory.

We present an empirical evaluation of WekaDB on both syitlaeid real data, us-
ing several machine learning algorithms from the origin&lké/package. The results
show significant improvement in terms of scalability, whsldl providing reasonable
execution time. For one of the algorithms, k-means clusggnive also compare with
an implementation developed specifically for using a datatlmackend [10]. In some
situations, WekaDB'’s implementation even outperforms #gecialized solutuion. In
general, our approach is a practical solution providindedxitity of data mining algo-
rithms without requiring machine learning developers talagbase experts.

2 Weka

Weka [9] is a popular, open source, machine learning soéywackage implementing
many state-of-the-art machine learning algorithms. Tladgarithms all access the data
through one well-defined data-structurer e. The data is represented by two main-
memory data structures defineddor e. A Dat aset is a set ofDat ar ecor d objects.
Each data record in a dataset consists of the same numbaéribditatvalue pairs and
represents one unit of data, e.g., information about asiogstomer. Additionally, the
records haveveightattributes, which are used by some learning algorithms.

Dat aset keeps attribute and type information, and maintaibRavect or point-
ing to individualDat ar ecor d objects. At the start of any algorithm, an initizdt aset
objectDS s created. Then, data records are loaded from an input fiteimalividual
Dat ar ecor d objects. For each object, a pointer is inserted intadRevect or of DS.

www.manaraa.com

l GUI User Interfacel

I

Superlvise:icmstering Assoc_iation Filters
Learning Learning
L J i InvoJk e L dataset table weights table
did |position|at|a2| ... tid |position | weight
Abstract core inteface 1 1 1 1
1 2 1 2
Invokel llnvoke F 7 2 7
{Core for main memori/ Core for relational DBMﬁ
(a) Architecture of WekaDB (b) WekaDB tables
Fig. 1. WekaDB

During the computation, a cofyS of aDat aset objectDScould be made. Copying
is lazy. Initially DS shares th®R vect or with DS. Only when aDat ar ecor d object
oin DS needs to be modified, a new copy of R vect or is created. All pointers in
this vector still point to the ol@at ar ecor d objects. Then, a new copy ofis created,
and the corresponding entry in the vector is adjusted aaugisd

FurthermoreDat aset provides methods to access and manipulate the data records:
enuner at eRecor ds() allows to iteratively retrieve data records, whiecor d(i ndex)
allows access to a record based on its index inDRevect or . General informa-
tion about the data set can be returned by methodsnlikeRecor ds() . There are
alsodel et e/ add methods, which remove/add the correspondiaigar ecor d pointer
from theDR vect or. Thesort () method sorts thBR vect or based on an attribute.
Summary statistics are provided by methods sucuasf Wi ght s() .

3 Datain WekaDB

Fig. 1(a) shows the the redesigned system architecturedBas thecor e interface
from Weka, we defined a general data structure interface. datg source that im-
plements this interface can be plugged into Weka. Our nevagéomanager uses a
relational database (currently DB2)at aset andDat ar ecor d have been modified
to access the database.Dat aset , the DR vect or was replaced by &-vect or.
Instead of pointing to ®at ar ecor d, each entry of the vector containgasi ti on
integer representing a record in the databaseatfar ecor d object is created (and the
record loaded to main memory), whenever it is accessed bgdneing algorithm.

3.1 DatabaseDesign

Data records reside in the database. Two extreme designatltes are as follows.
e Full table copy For eachDat aset objectDSthere is one tabl& DScontaining all
records to which the- vect or of DSpoints. Making a copS of DSleads to the
creation of a tabl@ DS, and records iff DSare copied td DS.

e Lazy approachThere is only onéat aset table with a special attributdi d indi-
cating to whichDat aset object arecord belongs. Initially, all records have theesam
valuelDSfor di d. When a copyDS is made from an existinDat aset objectDS,

www.manaraa.com

DS shares the records wifdS. Only if DS changes a record for computation pur-
poses, a copy of the original record is inserted intoDfieaset table with thedi d
attribute set tdDS'. This new record will be updated. Eabht aset object has to
keep track of the set afi d values with which its records might be labeled.

The full table copy approach is very time consuming if the hiae learning algo-
rithm performs manyat aset copy operations. However, it might be necessary if an
algorithm adds or replaces attributes, i.e., changes tiensa information. The lazy ap-
proach mirrors the lazy instantiation of n@®at ar ecor d objects in the main-memory
implementation otor e. Since most machine learning algorithms do not change at-
tribute values, this seems to be the most efficient apprddémivever, many algorithms
do change the weight attributes associated with the rectrttés happens, basically
all Dat aset objects will have their own set of records in thet aset table.

Therefore, we store the more static attribute informatiombat aset table and the
frequently changing weight information inn&i ght table (Figure 1(b)). ThBat aset
objects share the same records inDheaset table unless they change attribute val-
ues. If an algorithm never changes attribute values theoaésset of data records in
Dat aset with di d= IDS. In contrast, thenei ght table contains, for each existing
P-vect or (Dat aset objects might share- vect or s) its own set of weight records.
This set contains as many weight records as there are emtribs P- vect or . Note
that aP- vect or might have fewer entries than the total number of recordb witl
= IDS (e.g., in decision tree construction).

The Dat aset table has one attribute for each attribute of the origing dadi d
attribute as described above, angh@si ti on attribute that links the record to the
P-vect or of the Dat aset object. If a recorddr hasdid = IDS and position= X,
thenDSs P- vect or has one entry with valu¥. Thewei ght table has attributesi d
andposi ti on similar to thedi d andposi ti on attributes in thébat aset table, and a
wei ght . In order to match the weights with the corresponding resardheDat aset
table, we have to join over thsi t i on and matchli d/ t i d attributes. Botlbat aset
andwei ght tables have several indices (clustered and unclustereglpirt i on and
di d/ ti d attributes in order to speed up the most typical data access.

Some algorithms change the structure, i.e., they removeldméributes. This is
usually only done in the preprocessing phase. In such chsiesble copies are made.
When preprocessing is completedf id t er eddat aset table is created, which will
then be used instead of the originialt aset table.

3.2 Main Memory Data Structures

Figure 2 shows how the main memory data structures are adjusbrder to allow for
the main memory and database storage implementation taisb-Ehe abstract class
Abst r act Dat aset implements variables and methods used in both storageneple
tations.MvDat aset is the originabDat aset implementation in Weka, aroBDat aset

is the abstract class for our relational database impleatient It contains commonly
two subclasses. Recall that that aset object might have to keep track of sevedat.
However, if an algorithm never changes attribute valuesdpithe weights), there will
be only onadi d value for all records. Hence, we allow algorithms to dectais fact
in advance, and then use a simpler implementation which graorédi d. The class

www.manaraa.com

Dataset Interface

Implements

AbstractDataset
Abstract Class

extends [pBDataset

Abstract Class

Main Memory extends

MMDataset
(original Instances.java)

4 N
ImmutableDataseﬂ MutableDataset]

Datarecord Interfacg
_ MMDatarecord . d DBDatarecord
(original Instance.java)| |€xtends extends ~apstract Class

extends

{ (ImmutableDatarecor)ﬂMutableDatarecorl)

Fig. 2. WekaDB: Dataset and Datarecord

Mut abl eDat aset supports all the functions that allow algorithms to chaniiébaite
values, whilel mrut abl eDat aset does not support those functions (only the weights
are allowed to change). The same class structure is usedtretords.

4 Database Access

WekaDB accesses the database using a standard JDBC APpdeereasons, we only
outline here how thénmut abl eDat aset class accesses the database. A speoid
interface allows the transfer of records from a file in ARFFiat (used by Weka) to
the database, creatin@gt aset andwei ght tables and the corresponding records.

When an algorithm starts, an initiahmut abl eDat aset object is created with
a correspondin@- vect or based on the information in thiat aset table. No data
records are loaded. The vect or is the only memory-based data structure that grows
linearly with the size of the data set. It is needed becaugerithms can reorder the
records during the computation, for instance by sorting msdmpling. In WekaDB,
this is done by reordering the entries in thevect or . This vector represents the data
in the correct order for a specifiamut abl eDat aset object while the records in the
dat aset andwei ght table are unordered.

If a copy DS is made from arl mut abl eDat aset objectDS, it can share the
P-vect or andti d value withDS, or it can create its owR- vect or, and receive a
newt i d value. In the latter case, it must call théd method for each record to which it
wants to refer. This method adds the position of the recotdd®- vect or and inserts
a weight record into theei ght table, with the same position and the neind value.
No records are added into thiat aset table forl nmut abl eDat aset objects. The
new "copy” of the data set is represented by the new P-vector.

Data records are accessed via tmnmer at eRecor ds() andRecor d(i ndex)
methods of thé mut abl eDat aset class. We only describe the latter he®ecor d(i ndex)
on objectDS loads the record with positiop if DSs P-vect or V hasV(indeX = p.
The (slightly simplified) SQL statement is

SELECT * FROM dat aset, wei ght
VWHERE wei ght.tid = | DS

AND dat aset.position = p

AND wei ght . position = p

www.manaraa.com

If Recor d(i ndex) is called in a loop accessing all records one by one, the-state
ment is executed repeatedly, and data transfer takes mlaeach record. Looping is
very common in data mining algorithms, which makes this typeata access very ex-
pensive. Hence, retrieval will be faster if we load a wholecdeecords with one query,
buffer them withincor e and then provide the records to the user on request within the
loop. Hence, we implemented a buffered versioRaxfor d(i ndex) , which retrieve®
records at a timeB is an adjustable parameter. In the buffered implementatiben a
record with positiorp (determined as above) is requested, we first check if thedeso
already in main memory. If so, the record is returned righdyavdtherwise, we use the
following (slightly simplified) SQL statement to retrieBeconsecutive records, starting
at positionp:

SELECT * FROM dat aset, weight

WHERE wei ght.tid = | DS

AND dat aset. position = weight.position
AND dat aset . position >=p

AND dat aset. position < (p+B)

TheB retrieved records are stored in a JDBEsul t Set . For data mining algorithms
that access the data sequentially and do not perform aripgobouffering can dramat-
ically decrease the number of database accessed. If anthigdrad sorted the entries
in theP- vect or, the benefits of buffering are limited.

5 Using more Database Functionality

The loose-coupling approach discussed so far performsupatation on data records
in main memory. It might be more efficient to perform some catafion within the
database by applying advanced SQL functionality. Thisdaadch semi-tight coupling
between Weka and database. For that purpose we modifiechbevee methods. As
a simple example, our implementationsafnOf Wi ght s of thel mut abl eDat aset
class uses the SQL aggregate functiomto perform the operation within the database.
Another example isort (), which orders the data based on the values of one attribute.
A main memory implementation requires retrieving recordssibly multiple times
from the database. In contrast, we use an SQL statementmithder by clause.

Data preprocessing [5] is a common step in many algorithtris.dsed to clean
data, and perform data transformation. Weka provides & §iéitos usingthed il ters
interface. The implementation itself is built on topaafr e. Weka’s main memory im-
plementation of the filters accesses records one by onetares sl the filtered data in
a queue. This adds considerable overhead, and reducesikiyediaie to the queue data
structure. We reimplemented the filters using a databaeated approach that does not
require loading any records into main memory. For instafarehe filter that replaces
all missing attribute values with the modes/means obsenvéie data, we precompute
modes and means with SQL aggregate functions andipdat e SQL statements to
replace missing values with these modes and means.

Since the machine learning algorithms are developed withonosidering space
limitations they might create their own data structureg timait scalability. For in-
stance, the logistic regression algorithm implemented ek&Vhormalizes the input
data and stores it in a 2-dimensional array (one dimensipresents the records, the

www.manaraa.com

other the normalized attributes). This is done by a passugirdhe data set using
Recor d(i ndex) calls. This array is, in fact, as large as the entire datasetapproach
is to provide adequate support in order to help developérsredte such limitations.
Normalizing records and then accessing the normalizedid@aystematic way seem
to be standard steps usable in various algorithms. Therefa offer extra normaliza-
tion methods as part of tHeat aset class. The methods use SQL queries to perform
the normalization and store the normalized values in theldete. The normalized data
can be retrieved through an interface that provides thedatanarray representation.
It can be used without knowing that a database implementaiaised. Whenever a
normalized record is accessed through the array interéacetresponding SQL query
retrieves the record from the database.

6 Optimizing JDBC Applications

Our implementation uses several standard mechanismséd sgpethe JDBC applica-
tion. First, our system uses a single database connectiail flatabase access to opti-
mize connection management. Since transaction managésrexgensive, we bundle
related operations in a single transaction in order to kkemumber of transactions
small. Third, since the system runs in single user mode, weu transactions in the
lowest isolation mode provided by the database to minintizeconcurrency control
overhead. Finally, we use JDB(epar edSt at enent objects as much as possible,
since these statements are parsed and compiled by the saststiem only once, and
later calls use the compiled statements, improving perdoce significantly.

7 Empirical evaluation

We evaluate WekaDB using the logistic regression algorjttma Naive Bayes algo-
rithm and the K-means clustering algorithm, on both symthetd real data sets. The
first two algorithms are used for classification problemsilevthe last one is an un-
supervised learning algorithm. We note that at the momdralgorithms in the Weka
package, except the decision tree construction algoritiork seamlessly with WekaDB.
Once logistic regression and k-means clustering were fulhgtional, the other algo-
rithms worked with WekaDB without any further tweaking.

The synthetic data sets were generated using the prograid].ofVe generated
training data sets with 10,000 to 1,000,000 records, andesiimg data set with 5000
records. Each data set has 10 numerical attributes anddlattaibute, without missing
values. We also run tests with filters for replacing missiatugs and for discretizing
continuous attributes. The results were very similar toathes reported here.

The real data set is based on the AVIRIS (Airborne Visibliedred Imaging Spec-
trometer) data set, originally created at JPL (Jet Propulsaboratory, California In-
stitute Technology) and extensively corrected by CCRS é&d&am Center for Remote
Sensing, Natural Resources Canada). It contains hypdrapedata that was captured
by the NASA/JPL AVIRIS sensor over Cuprite, Nevada on Junegl®®6 (19:31UT)
(see [6] for more information). The original data set coméc314 368 records and 170
attributes. For the purpose of the experiments, we gernefate different data sets,
containing 12669, 19712, 35055 and 78592 records respégtand one testing data

www.manaraa.com

Time (seconds)

set containing 3224 records. Each data set has 168 numeilutgs and 1 nominal
class attribute without missing values.

We restricted the memory size to be used by Weka/WekaDB toB#iborder to
avoid long running times and be able to run many experiméfitexperiments use the
default values for all the algorithms, unless otherwisegigsl.

In all the experiments we measure the runtime of the algostivhen we increase
the size of the training data set. In all cases, the main-nmgimmplementation of Weka
is significantly faster (between 2-3 orders of magnitudewelver, the maximum num-
ber of instances that it can handle is below 40000. WekaDBherother hand, can
handle up to 700000 - 800000 instances, which is a 20-foldorgment.

4000 3500

WekaDB —— " WekaDB ——

3500 ¢ Buffered WekaDB < 1 3000 Buffered WekaDB -]
3000 | 1 é 2500 t
2500 1 8 2000 f
2000 r 8 1500
1500 | @ I
1000 | 4 & 10007
500 T g 500 ¢

0 ""'"-"“T L L L L 0 : t : * : -

100 200 300 400 500 600 700 100 200 300 400 500 600 700 800

Instances (x 1000) Instances (x 1000)

Fig. 3. WekaDB for Naive Bayes (left) and Logistic regression (tf)gin synthetic data

Figure 3 illustrates the running time on the synthetic dataf@r WekaDB with a
buffer (size 10000) and without using a buffer for Naive Bagleft figure) and logistic
regression (right figure). As illustrated, the computatiore increases linearly with the
number of instances, which should be expected, as bothitidgwrhave to loop through
the data. A similar linear increase is observed in the oaldiseka implementation, but
with a much smaller slope, of course. Using the buffer yields-fold improvement
in speed. Weka’s computation time is 11 seconds at 28000de¢not shown in the
figure), compared to 368 seconds for WekaDB with a buffer.ddekiVeka’s computa-
tion is roughly 30 times faster. For logistic regressiom, tiime difference is more pro-
nounced, with Weka finishing in 0.9 seconds, compared to 2arsls for WekaDB.
However, Weka is showing a significant space limitation ragrout of memory at
29000 instances. At 700000 and 800000 records respe¢tWekaDB also runs out of
memory, because at this point the position vector becomesmaary constraint (since
it grows linearly with the size of the data set). Recall that wse only 64MB. If we
assume that 1GB of main memory is available, we can expecaldBko handle on
the order of 10,000,000 records while Weka will handle lass1t500,000.

Figure 4(a) presents the performance of the original (maémory) Weka imple-
mentation compared to WekaDB with a buffer on the AVIRIS dataThe results are
consistent with those on the synthetic data: Weka can onmglbea35000 instances,
roughly 10% of the size of the original data set. WekaDB iggidy 1000 times slower
at 35000 instances, but can handle the entire data set stidbederformance scales

www.manaraa.com

Time (seconds)

45000 w w w w w ‘ 16000

WekaDB " 7 DB2-SQL —
ggggg I Weka -~] 14000 | WekaDB -~
) 2 12000 |
2 30000 | e | .
S g 10000
S 25000 | 2
o @ 8000 |
<= 20000 f =
2 15000 | @ 6000
F 10000 | 1 & 4000
5000 * g 2000 ¢
0 S 0
0 50 100 150 200 250 300 350 10020030040050060070080090AL.000
Instances (x 1000) Instances (x 1000)
(a) Weka and buffered WekaDB (b) DB-SQL and buffered WekaDB
for Logistic regression (AVIRIS data) for k-means clusterik = 2 (synthetic data)
Fig. 4. Performance Comparisons
w00 e e 1111 K —
-SQ - 10000 -SQ & 350000 -SQ
zzgg 2 8000 2 300000
o S 250000
1500 @ 6000 ﬁ 200000
1000 £ 4000 £ 150000
[F 100000
500 | 2000 50000
04 6 8 10 12 14 16 18 20 04 6 8 10 12 14 16 18 20 04 6 8 10 12 14 16 18 20
Number of clusters Number of clusters Number of clusters
(a) 20000 records (b) 50000 records (c) 300000 records

Fig. 5. DB-SQL and buffered WekaDB for k-means clustering on déferdataset sizes (synthetic
data)

linearly with the number of instances. The reason for thgdatiscrepancy in running
time is the number of attributes, which is much larger thartte synthetic data. Very
similar results are obtained with Naive Bayes.

For k-means clustering, the comparison of Weka, WekaDB afff¢fed WekaDB
is very similar to those presented before, so we omit it hiergtead, Fig.4(b) com-
pares WekaDB using a buffer to a k-means algorithm propog&ttonez [10], which
also stores the data in a database and re-implements theutatiop in the database.
This algorithm takes particular care to take advantage gfdmtabase-specific opti-
mizations. We refer to it as DB2-SQL. As expected, the omadialgorithm can scale
better (since there are no limiting memory data structuees] is faster for the partic-
ular number of clusters requestdd= 2). However, further analysis of the algorithms
shows an interesting trend. Fig. 5 shows the behavior ofibeatgorithms as we vary
the number of clusters between 5 and 20, for different datiges. As the number
of clusters increases, the computation time of WekaDB griavesrly, while that of
DB2-SQL grows super-linearly. Hence, when there are maustets, the simple k-
means algorithm in WekaDB outperforms the specialized [3B3- implementation.

www.manaraa.com

As the number of instances also increases, WekaDB has etten performance. This

is due to the fact that in the DB2-SQL implementation, thesiducenters and all aux-
iliary memory structures are in the database. As instanaes to be compared to the
cluster centers in order to decide where they belong, thepatation time degrades.
Also, larger numbers of clusters typically require moreat®ns of the algorithms. In

WekaDB, since the number of clusters is still relatively 8nzelot of the processing is

done in main memory, which makes it much faster.

8 Conclusions

This paper presented an approach to the integration ofifepeaigorithms with rela-
tional databases. We built an extension of the well-knowk&\ata mining library,
WekaDB, which allows the data used by the learning algorsttmreside on secondary
storage. This change is transparent to the developers diim@atearning algorithms.
Our empirical results show that this approach providesaiidtly up to very large data
sets. From the point of view of evaluating empirically thefpemance of new data
mining algorithms, we believe that WekaDB provides an ieséing benchmark, since
it provides a faithful implementation and execution of tearhing algorithms. Other
approaches, such as resampling and special-purposethigsrican be compared to it
in terms of accuracy, as well as scalability and computatiime. Also, in principle,
WekaDB allows any new algorithms that are added to the Wekkage to be able to
work immediately on data stored in a database, without arthiéu modifications. We
currently work on removing the remaining memory limitatifam WekaDB, by elimi-
nating the need to have an internal memory data structuzardim the size of the data
set. The idea is to store the position as additional atgibuthe dataset table.

References

1. R. Agrawal, T. Imielinski, and A. Swami. Database miniAgoerformance perspective.
IEEE Transactions on Knowledge and Data Engieeri®), 1993.

2. J. Gehrke, R. Ramakrishnan, and V. Ganti. Rainforestaféwork for fast decision tree
construction of large datasetst. Conf. on Very Large Data BaseE998.

3. A. W. Moore and M. Lee. Cached sufficient statistics forcégfit machine learning with
large data setslournal of Artificial Intelligence ResearcB, 1998.

4. W. Du Mouchel, C. Wlinsky, T. Johson, C. Cortes, and Dgiren. Squashing flat files
flatter. ACM Int. Conf. on Knowledge Discovery and Data Miniag99.

5. D. Pyle.Data Preparation for Data Mining Morgan Kaufmann Publishers, 1999.

6. B.J. Ross, A. G. Gualtieri, F. Fueten, and P. Budkewitstyperspectral image analysis
using genetic programmmindhe Genetic and Evolutionary Computation Cp2002.

7. S. Sarawagi, S. Thomas, and R. Agrawal. Integrating &tsmt rule mining with re-
lational database systems: alternatives and implicatigkSM SIGMOD Int. Conf. on
Management of Datal 998.

8. J. Shafer, R. Agrawal, and M. Mehta. SPRINT: A scalablalpelrclassifier for data
mining. Int. Conf. on Very Large Data Bases996.

9. 1. H. Witen and E. Frank Data mining software in Java.
http://www.cs.waikato.ac.nz/ml/weka/.

10. Carlos Ordonez. Programming the K-means Clusteringitam in SQL. ACM Int.
Conf. on Knowledge Discovery and Data Minjr&04.

www.manaraa.com

