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Abstract. Software packages providing a whole set of data mining and machine
learning algorithms are attractive because they allow experimentation with many
kinds of algorithms in an easy setup. However, these packages are often based
on main-memory data structures, limiting the amount of datathey can handle.
In this paper we use a relational database as secondary storage in order to elimi-
nate this limitation. Unlike existing approaches, which often focus on optimizing
a single algorithm to work with a database backend, we propose a general ap-
proach, which provides a database interface for several algorithms at once. We
have taken a popular machine learning software package, Weka, and added a re-
lational storage manager as back-tier to the system. The extension is transparent
to the algorithms implemented in Weka, since it is hidden behind Weka’s stan-
dard main-memory data structure interface. Furthermore, some general mining
tasks are transfered into the database system to speed up execution. We tested the
extended system, refered to as WekaDB, and our results show that it achieves a
much higher scalability than Weka, while providing the sameoutput and main-
taining good computation time.

1 Introduction

Machine learning and mining algorithms face the critical issue of scalability in the pres-
ence of huge amounts of data . Typical approaches to address this problem are to select a
subset of the data [4, 3], to adjust a particular algorithm towork incrementally (process-
ing small batches of data at a time), or to change the algorithms such that they use data
structures and access methods that are aware of the secondary storage. For instance, [8,
2] propose algorithms for decision tree construction that access special relational tables
on secondary storage. Agarwal et al [7] develop database implementations of Apriori,
a well-known algorithm for association rule mining, and show that some very specific
implementation details can have a big impact on performance. Their approach achieves
scalability by rearranging fundamental steps of the algorithm. Both of these pieces of
work require the developer of the mining algorithm to be veryfamiliar with database
technology, implementing stored procedures, user defined functions, or choosing the
best SQL statements. Machine learning researchers, however, are often not familiar
enough with database technology to be aware of all optimization possibilities.

The goal of our research is to provide a general solution to scalability that can be
applied to existing algorithms, ideally without modifyingthem, and that can be used
by machine learning researchers to implement new algorithms without the need to be
database experts. For that purpose, we have taken a very popular open-source package
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of machine learning algorithms, Weka [9], which can only be used on data sets that
can fit into main memory, and extended it to be able to use a database as backend. In
the extended system, WekaDB, a storage manager interface isdefined with two imple-
mentations. One implementation is the original main-memory representation of data,
the other uses a relational database management system (DBMS). All algorithms im-
plemented in Weka can run in WekaDB without changes, and can use either of the two
storage implementations depending on the data set size. Also, new algorithms can be
added to the package without developers being required to know SQL.

Our basic approach couples Weka and the database rather loosely. The basic model
uses the DBMS as a simple storage with the facility to retrieve records individually
from the database, perform all computation in main memory, and write any necessary
changes back to the database. However, accessing records individually is expensive,
so WekaDB also implements several generally applicable optimizations. First, data is
transferred in chunks between the database and WekaDB instead of one record at a time
whenever possible. Second, many of the storage manager interface methods are imple-
mented using advanced SQL statements; in particular, we take advantage of aggregate
functionality (like sum, avg) provided by the DBMS. Third, some popular libraries (e.g.,
pre-processing filters) that were originally implemented on top of the storage interface,
have been reimplemented to take advantage of DBMS functionality. Furthermore, even
though WekaDB itself eases data size limitations, the implementations of the machine
learning algorithms can create large internal data structures, imposing indirect limita-
tions. In order to address this issue WekaDB provides database implementations for
typical main memory data structures, like arrays. The algorithms can access these data
structures as if they were implemented in main-memory.

We present an empirical evaluation of WekaDB on both synthetic and real data, us-
ing several machine learning algorithms from the original Weka package. The results
show significant improvement in terms of scalability, whilestill providing reasonable
execution time. For one of the algorithms, k-means clustering, we also compare with
an implementation developed specifically for using a database backend [10]. In some
situations, WekaDB’s implementation even outperforms this specialized solutuion. In
general, our approach is a practical solution providing scalability of data mining algo-
rithms without requiring machine learning developers to bedatabase experts.

2 Weka

Weka [9] is a popular, open source, machine learning software package implementing
many state-of-the-art machine learning algorithms. Thesealgorithms all access the data
through one well-defined data-structurecore. The data is represented by two main-
memory data structures defined incore. A Dataset is a set ofDatarecord objects.
Each data record in a dataset consists of the same number of attribute/value pairs and
represents one unit of data, e.g., information about a single customer. Additionally, the
records haveweightattributes, which are used by some learning algorithms.

Dataset keeps attribute and type information, and maintains aDR vector point-
ing to individualDatarecord objects. At the start of any algorithm, an initialDataset

objectDS is created. Then, data records are loaded from an input file into individual
Datarecord objects. For each object, a pointer is inserted into theDR vector of DS.
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(a) Architecture of WekaDB (b) WekaDB tables

Fig. 1. WekaDB

During the computation, a copyDS′ of aDataset objectDScould be made. Copying
is lazy. Initially DS′ shares theDR vector with DS. Only when aDatarecord object
o in DS′ needs to be modified, a new copy of theDR vector is created. All pointers in
this vector still point to the oldDatarecord objects. Then, a new copy ofo is created,
and the corresponding entry in the vector is adjusted accordingly.

Furthermore,Dataset provides methods to access and manipulate the data records:
enumerateRecords()allows to iteratively retrieve data records, whileRecord(index)
allows access to a record based on its index in theDR vector. General informa-
tion about the data set can be returned by methods likenumRecords(). There are
alsodelete/addmethods, which remove/add the correspondingDatarecord pointer
from theDR vector. Thesort() method sorts theDR vector based on an attribute.
Summary statistics are provided by methods such assumofWeights().

3 Data in WekaDB

Fig. 1(a) shows the the redesigned system architecture. Based on thecore interface
from Weka, we defined a general data structure interface. Anydata source that im-
plements this interface can be plugged into Weka. Our new storage manager uses a
relational database (currently DB2).Dataset andDatarecord have been modified
to access the database. InDataset, the DR vector was replaced by aP-vector.
Instead of pointing to aDatarecord, each entry of the vector contains aposition
integer representing a record in the database. ADatarecord object is created (and the
record loaded to main memory), whenever it is accessed by thelearning algorithm.

3.1 Database Design

Data records reside in the database. Two extreme design alternatives are as follows.
• Full table copy: For eachDataset objectDS there is one tableTDScontaining all

records to which theP-vector of DSpoints. Making a copyDS′ of DS leads to the
creation of a tableTDS′, and records inTDSare copied toTDS′.

• Lazy approach: There is only oneDataset table with a special attributedid indi-
cating to whichDataset object a record belongs. Initially, all records have the same
valueIDS for did. When a copyDS′ is made from an existingDataset objectDS,
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DS′ shares the records withDS. Only if DS′ changes a record for computation pur-
poses, a copy of the original record is inserted into theDataset table with thedid
attribute set toIDS′. This new record will be updated. EachDataset object has to
keep track of the set ofdid values with which its records might be labeled.
The full table copy approach is very time consuming if the machine learning algo-

rithm performs manyDataset copy operations. However, it might be necessary if an
algorithm adds or replaces attributes, i.e., changes the schema information. The lazy ap-
proach mirrors the lazy instantiation of newDatarecord objects in the main-memory
implementation ofcore. Since most machine learning algorithms do not change at-
tribute values, this seems to be the most efficient approach.However, many algorithms
do change the weight attributes associated with the records. If this happens, basically
all Dataset objects will have their own set of records in theDataset table.

Therefore, we store the more static attribute information in aDataset table and the
frequently changing weight information in aweight table (Figure 1(b)). TheDataset
objects share the same records in theDataset table unless they change attribute val-
ues. If an algorithm never changes attribute values there isone set of data records in
Dataset with did= IDS. In contrast, theweight table contains, for each existing
P-vector (Dataset objects might shareP-vectors) its own set of weight records.
This set contains as many weight records as there are entriesin theP-vector. Note
that aP-vector might have fewer entries than the total number of records with did

= IDS (e.g., in decision tree construction).
TheDataset table has one attribute for each attribute of the original data, adid

attribute as described above, and aposition attribute that links the record to the
P-vector of the Dataset object. If a recorddr hasdid = IDS and position= X,
thenDS’s P-vector has one entry with valueX. Theweight table has attributestid
andposition similar to thedid andposition attributes in theDataset table, and a
weight. In order to match the weights with the corresponding records in theDataset
table, we have to join over theposition and matchdid/tid attributes. BothDataset
andweight tables have several indices (clustered and unclustered) onposition and
did/tid attributes in order to speed up the most typical data access.

Some algorithms change the structure, i.e., they remove or add attributes. This is
usually only done in the preprocessing phase. In such cases,full table copies are made.
When preprocessing is completed, afiltereddataset table is created, which will
then be used instead of the originaldataset table.

3.2 Main Memory Data Structures

Figure 2 shows how the main memory data structures are adjusted in order to allow for
the main memory and database storage implementation to co-exist. The abstract class
AbstractDataset implements variables and methods used in both storage implemen-
tations.MMDataset is the originalDataset implementation in Weka, andDBDataset
is the abstract class for our relational database implementation. It contains commonly
two subclasses. Recall that theDataset object might have to keep track of severaldid.
However, if an algorithm never changes attribute values (except the weights), there will
be only onedid value for all records. Hence, we allow algorithms to declarethis fact
in advance, and then use a simpler implementation which can ignoredid. The class
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Fig. 2. WekaDB: Dataset and Datarecord

MutableDataset supports all the functions that allow algorithms to change attribute
values, whileImmutableDataset does not support those functions (only the weights
are allowed to change). The same class structure is used for data records.

4 Database Access

WekaDB accesses the database using a standard JDBC API. For space reasons, we only
outline here how theImmutableDataset class accesses the database. A specialload

interface allows the transfer of records from a file in ARFF format (used by Weka) to
the database, creatingdataset andweight tables and the corresponding records.

When an algorithm starts, an initialImmutableDataset object is created with
a correspondingP-vector based on the information in thedataset table. No data
records are loaded. TheP-vector is the only memory-based data structure that grows
linearly with the size of the data set. It is needed because algorithms can reorder the
records during the computation, for instance by sorting andresampling. In WekaDB,
this is done by reordering the entries in theP-vector. This vector represents the data
in the correct order for a specificImmutableDataset object while the records in the
dataset andweight table are unordered.

If a copy DS′ is made from anImmutableDataset objectDS, it can share the
P-vector andtid value withDS, or it can create its ownP-vector, and receive a
newtid value. In the latter case, it must call theadd method for each record to which it
wants to refer. This method adds the position of the record totheP-vector and inserts
a weight record into theweight table, with the same position and the newtid value.
No records are added into thedataset table forImmutableDataset objects. The
new ”copy” of the data set is represented by the new P-vector.

Data records are accessed via theenumerateRecords() andRecord(index)
methods of theImmutableDataset class. We only describe the latter here.Record(index)

on objectDS loads the record with positionp if DS’s P-vector V hasV[index] = p.
The (slightly simplified) SQL statement is

SELECT * FROM dataset, weight
WHERE weight.tid = IDS
AND dataset.position = p
AND weight.position = p
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If Record(index) is called in a loop accessing all records one by one, the state-
ment is executed repeatedly, and data transfer takes place for each record. Looping is
very common in data mining algorithms, which makes this typeof data access very ex-
pensive. Hence, retrieval will be faster if we load a whole set of records with one query,
buffer them withincore and then provide the records to the user on request within the
loop. Hence, we implemented a buffered version ofRecord(index), which retrievesB
records at a time.B is an adjustable parameter. In the buffered implementation, when a
record with positionp (determined as above) is requested, we first check if the record is
already in main memory. If so, the record is returned right away. Otherwise, we use the
following (slightly simplified) SQL statement to retrieveB consecutive records, starting
at positionp:

SELECT * FROM dataset, weight
WHERE weight.tid = IDS
AND dataset.position = weight.position
AND dataset.position >= p
AND dataset.position < (p+B)

TheB retrieved records are stored in a JDBCResultSet. For data mining algorithms
that access the data sequentially and do not perform any sorting, buffering can dramat-
ically decrease the number of database accessed. If an algorithm had sorted the entries
in theP-vector, the benefits of buffering are limited.

5 Using more Database Functionality

The loose-coupling approach discussed so far performs all computation on data records
in main memory. It might be more efficient to perform some computation within the
database by applying advanced SQL functionality. This leads to a semi-tight coupling
between Weka and database. For that purpose we modified several core methods. As
a simple example, our implementation ofsumOfWeights of theImmutableDataset
class uses the SQL aggregate functionsum to perform the operation within the database.
Another example issort(), which orders the data based on the values of one attribute.
A main memory implementation requires retrieving records possibly multiple times
from the database. In contrast, we use an SQL statement with an order by clause.

Data preprocessing [5] is a common step in many algorithms. It is used to clean
data, and perform data transformation. Weka provides a set of filters using thefilters
interface. The implementation itself is built on top ofcore. Weka’s main memory im-
plementation of the filters accesses records one by one, and stores all the filtered data in
a queue. This adds considerable overhead, and reduces scalability due to the queue data
structure. We reimplemented the filters using a database oriented approach that does not
require loading any records into main memory. For instance,for the filter that replaces
all missing attribute values with the modes/means observedin the data, we precompute
modes and means with SQL aggregate functions and useupdate SQL statements to
replace missing values with these modes and means.

Since the machine learning algorithms are developed without considering space
limitations they might create their own data structures that limit scalability. For in-
stance, the logistic regression algorithm implemented in Weka normalizes the input
data and stores it in a 2-dimensional array (one dimension represents the records, the
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other the normalized attributes). This is done by a pass through the data set using
Record(index) calls. This array is, in fact, as large as the entire data set.Our approach
is to provide adequate support in order to help developers eliminate such limitations.
Normalizing records and then accessing the normalized datain a systematic way seem
to be standard steps usable in various algorithms. Therefore, we offer extra normaliza-
tion methods as part of theDataset class. The methods use SQL queries to perform
the normalization and store the normalized values in the database. The normalized data
can be retrieved through an interface that provides the standard array representation.
It can be used without knowing that a database implementation is used. Whenever a
normalized record is accessed through the array interface,a corresponding SQL query
retrieves the record from the database.

6 Optimizing JDBC Applications

Our implementation uses several standard mechanisms to speed up the JDBC applica-
tion. First, our system uses a single database connection for all database access to opti-
mize connection management. Since transaction managementis expensive, we bundle
related operations in a single transaction in order to keep the number of transactions
small. Third, since the system runs in single user mode, we run our transactions in the
lowest isolation mode provided by the database to minimize the concurrency control
overhead. Finally, we use JDBC’sPreparedStatement objects as much as possible,
since these statements are parsed and compiled by the database system only once, and
later calls use the compiled statements, improving performance significantly.

7 Empirical evaluation

We evaluate WekaDB using the logistic regression algorithm, the Naive Bayes algo-
rithm and the K-means clustering algorithm, on both synthetic and real data sets. The
first two algorithms are used for classification problems, while the last one is an un-
supervised learning algorithm. We note that at the moment, all algorithms in the Weka
package, except the decision tree construction algorithm,work seamlessly with WekaDB.
Once logistic regression and k-means clustering were fullyfunctional, the other algo-
rithms worked with WekaDB without any further tweaking.

The synthetic data sets were generated using the program of [1]. We generated
training data sets with 10,000 to 1,000,000 records, and onetesting data set with 5000
records. Each data set has 10 numerical attributes and 1 class attribute, without missing
values. We also run tests with filters for replacing missing values and for discretizing
continuous attributes. The results were very similar to theones reported here.

The real data set is based on the AVIRIS (Airborne Visible/Infrared Imaging Spec-
trometer) data set, originally created at JPL (Jet Propulsion Laboratory, California In-
stitute Technology) and extensively corrected by CCRS (Canadian Center for Remote
Sensing, Natural Resources Canada). It contains hyperspectral data that was captured
by the NASA/JPL AVIRIS sensor over Cuprite, Nevada on June 12, 1996 (19:31UT)
(see [6] for more information). The original data set contains 314,368 records and 170
attributes. For the purpose of the experiments, we generated four different data sets,
containing 12669, 19712, 35055 and 78592 records respectively, and one testing data
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set containing 3224 records. Each data set has 168 numeric attributes and 1 nominal
class attribute without missing values.

We restricted the memory size to be used by Weka/WekaDB to 64MB in order to
avoid long running times and be able to run many experiments.All experiments use the
default values for all the algorithms, unless otherwise specified.

In all the experiments we measure the runtime of the algorithms when we increase
the size of the training data set. In all cases, the main-memory implementation of Weka
is significantly faster (between 2-3 orders of magnitude). However, the maximum num-
ber of instances that it can handle is below 40000. WekaDB, onthe other hand, can
handle up to 700000 - 800000 instances, which is a 20-fold improvement.
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Fig. 3. WekaDB for Naive Bayes (left) and Logistic regression (right) on synthetic data

Figure 3 illustrates the running time on the synthetic data set for WekaDB with a
buffer (size 10000) and without using a buffer for Naive Bayes (left figure) and logistic
regression (right figure). As illustrated, the computationtime increases linearly with the
number of instances, which should be expected, as both algorithms have to loop through
the data. A similar linear increase is observed in the original Weka implementation, but
with a much smaller slope, of course. Using the buffer yieldsa 5-fold improvement
in speed. Weka’s computation time is 11 seconds at 28000 records (not shown in the
figure), compared to 368 seconds for WekaDB with a buffer. Hence, Weka’s computa-
tion is roughly 30 times faster. For logistic regression, the time difference is more pro-
nounced, with Weka finishing in 0.9 seconds, compared to 251 seconds for WekaDB.
However, Weka is showing a significant space limitation running out of memory at
29000 instances. At 700000 and 800000 records respectively, WekaDB also runs out of
memory, because at this point the position vector becomes a memory constraint (since
it grows linearly with the size of the data set). Recall that we use only 64MB. If we
assume that 1GB of main memory is available, we can expect WekaDB to handle on
the order of 10,000,000 records while Weka will handle less than 500,000.

Figure 4(a) presents the performance of the original (main-memory) Weka imple-
mentation compared to WekaDB with a buffer on the AVIRIS dataset. The results are
consistent with those on the synthetic data: Weka can only handle 35000 instances,
roughly 10% of the size of the original data set. WekaDB is roughly 1000 times slower
at 35000 instances, but can handle the entire data set successfully. Performance scales
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Fig. 4. Performance Comparisons
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Fig. 5. DB-SQL and buffered WekaDB for k-means clustering on different dataset sizes (synthetic
data)

linearly with the number of instances. The reason for the large discrepancy in running
time is the number of attributes, which is much larger than for the synthetic data. Very
similar results are obtained with Naive Bayes.

For k-means clustering, the comparison of Weka, WekaDB and buffered WekaDB
is very similar to those presented before, so we omit it here.Instead, Fig.4(b) com-
pares WekaDB using a buffer to a k-means algorithm proposed by Ordonez [10], which
also stores the data in a database and re-implements the computation in the database.
This algorithm takes particular care to take advantage of any database-specific opti-
mizations. We refer to it as DB2-SQL. As expected, the optimized algorithm can scale
better (since there are no limiting memory data structures), and is faster for the partic-
ular number of clusters requested (k = 2). However, further analysis of the algorithms
shows an interesting trend. Fig. 5 shows the behavior of the two algorithms as we vary
the number of clusters between 5 and 20, for different dataset sizes. As the number
of clusters increases, the computation time of WekaDB growslinearly, while that of
DB2-SQL grows super-linearly. Hence, when there are many clusters, the simple k-
means algorithm in WekaDB outperforms the specialized DB2-SQL implementation.
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As the number of instances also increases, WekaDB has even better performance. This
is due to the fact that in the DB2-SQL implementation, the cluster centers and all aux-
iliary memory structures are in the database. As instances have to be compared to the
cluster centers in order to decide where they belong, the computation time degrades.
Also, larger numbers of clusters typically require more iterations of the algorithms. In
WekaDB, since the number of clusters is still relatively small, a lot of the processing is
done in main memory, which makes it much faster.

8 Conclusions
This paper presented an approach to the integration of learning algorithms with rela-
tional databases. We built an extension of the well-known Weka data mining library,
WekaDB, which allows the data used by the learning algorithms to reside on secondary
storage. This change is transparent to the developers of machine learning algorithms.
Our empirical results show that this approach provides scalability up to very large data
sets. From the point of view of evaluating empirically the performance of new data
mining algorithms, we believe that WekaDB provides an interesting benchmark, since
it provides a faithful implementation and execution of the learning algorithms. Other
approaches, such as resampling and special-purpose algorithms, can be compared to it
in terms of accuracy, as well as scalability and computationtime. Also, in principle,
WekaDB allows any new algorithms that are added to the Weka package to be able to
work immediately on data stored in a database, without any further modifications. We
currently work on removing the remaining memory limitationfor WekaDB, by elimi-
nating the need to have an internal memory data structure linear in the size of the data
set. The idea is to store the position as additional attribute in the dataset table.
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